Уравнение Бога. В поисках теории всего

Издательство «Альпина нон-фикшн» представляет книгу физика и популяризатора науки Митио Каку «Уравнение Бога. В поисках теории всего» (перевод Натальи Лисовой)

«Уравнение Бога» — это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Митио Каку прослеживает весь путь удивительных открытий — от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, — ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира. Уже более полувека физики разных стран не могут достичь этой грандиозной цели. Правильный ли путь они избрали? Есть ли «свет в конце тоннеля»? Об этом — новая книга Митио Каку.

Предлагаем прочитать фрагмент книги.

 

Понятие кванта родилось в 1900 г., когда немецкий физик Макс Планк задался простым вопросом: почему нагретые предметы светятся? Когда люди тысячи лет назад впервые обуздали огонь, они заметили, что горячие объекты светятся определенными цветами. Кузнецы столетиями знали, что нагреваемые объекты меняют цвет от красного к желтому и голубому.

Но когда физики попытались рассчитать этот эффект, опираясь на работы Ньютона и Максвелла, они столкнулись с проблемой. Согласно Ньютону, атомы, разогреваясь, начинают быстрее колебаться. А согласно Максвеллу, колеблющиеся заряды, в свою очередь, могут испускать электромагнитное излучение в виде света. Но когда физики рассчитали излучение, испускаемое горячими колеблющимися атомами, результат не оправдал ожиданий. На низких частотах эта модель достаточно хорошо совпадала с экспериментальными данными. Но при увеличении частоты энергия света должна была стремиться к бесконечности, что нелепо. Для физика бесконечность — всего лишь признак того, что уравнения не работают, а сами они не понимают, что происходит.

Тогда Макс Планк предложил невинную гипотезу, согласно которой энергия, вместо того чтобы быть непрерывной, как в теории Ньютона, на самом деле излучается дискретными пакетами, которые он назвал квантами. Отталкиваясь от этой идеи, он обнаружил, что может точно вычислять энергию, излучаемую нагретыми объектами. Чем горячее объект, тем выше частота его излучения, что соответствует разным цветовым оттенкам спектра. Вот почему нагретые тела меняют цвет от красного к голубому с ростом температуры. Кроме того, это позволяет нам определить температуру Солнца.

Услышав в первый раз, что температура на поверхности Солнца составляет около 6000 ºC, вы, возможно, с удивлением подумали: откуда мы это знаем? Никто и никогда не бывал на Солнце с термометром. На самом же деле температура Солнца известна нам благодаря длине волны излучаемого им света.

После этого Планк рассчитал размер этих пакетов световой энергии, или квантов, и выразил его через константу — постоянную Планка h, которая равна 6,6 × 10–34 Дж·с. (Это число Планк нашел, вручную подбирая энергию пакетов и добиваясь идеального совпадения с экспериментальными данными.)

Если мы устремим постоянную Планка к нулю, все уравнения квантовой теории сведутся к уравнениям Ньютона. (Это означает, что странное поведение элементарных частиц, которое часто противоречит здравому смыслу, сводится к знакомым законам движения Ньютона, если присвоить постоянной Планка нулевое значение.) Вот почему мы редко наблюдаем квантовые эффекты в повседневной жизни. Нашим органам чувств окружающий мир представляется вполне ньютоновским, потому что постоянная Планка — очень маленькое число, способное повлиять на Вселенную только на субатомном уровне.

Эти небольшие квантовые эффекты называются квантовыми поправками, и физики иногда тратят целую жизнь на попытки их вычислить. В 1905 г. — в том самом году, когда он сформулировал принципы специальной теории относительности, — Эйнштейн применил квантовую теорию к свету и показал, что свет — это не просто волна, что он ведет себя как отдельный пакет энергии, или частица, которая получила название фотона. Так что свет, очевидно, имеет две ипостаси: это и волна, как предсказывал Максвелл, и частица (фотон), как предсказали Планк и Эйнштейн. Так зарождались новые представления о свете. Свет состоит из фотонов, которые представляют собой кванты, или частицы, но каждый фотон создает вокруг себя поля (электрическое и магнитное). Эти поля, в свою очередь, сформированы подобно волнам и подчиняются уравнениям Максвелла. Таким образом, мы получили красивую взаимосвязь частиц и полей, которые их окружают.

Но если свет существует в двух формах — как частицы и как волны, то не присуща ли и электрону та же странная двойственность? Этот вопрос был следующим логическим шагом, а ответу на него суждено было произвести глубинный эффект и до основания потрясти не только мир современной физики, но и саму цивилизацию.

Электронные волны

После этого физики, к собственному изумлению, обнаружили, что электроны, которые когда-то считались твердыми компактными частицами, тоже могут вести себя подобно волнам. Чтобы продемонстрировать это, можно взять два листа бумаги и поставить их один за другим. В первом листе следует прорезать две щели, а затем направить на этот лист пучок электронов. В принципе, логично было бы ожидать появления на втором листе двух полос в тех местах, куда попадают электронные пучки из щелей. Каждый электрон проходит либо через одну щель, либо через вторую, но не через обе сразу. Так подсказывает здравый смысл.

 

Электроны, проходя сквозь двойную щель, ведут себя как волны, то есть интерферируют друг с другом по другую сторону экрана, словно они проходят сквозь оба отверстия одновременно, что невозможно в Ньютоновой физике, но является, по сути, фундаментом квантовой механики

Но если проделать этот эксперимент в реальности, на втором листе появится группа вертикальных линий — типичное явление, возникающее при интерференции волн. (В следующий раз, когда будете принимать ванну, шлепните аккуратно по воде в двух местах одновременно, и увидите, как появляется интерференционная картина, похожая на узор паутины.)

Больше того, такая картина возникает, даже если запускать электроны по одному. Но это означает в некотором смысле, что электрон проходит сквозь обе щели одновременно. В этом заключается парадокс: как может точечная частица, электрон, интерферировать сам с собой, словно он умудрился пройти сквозь две щели? Плюс ко всему другие эксперименты с электронами показали, что они способны пропадать и вновь появляться в другом месте, что совершенно невозможно в Ньютоновом мире. Если бы постоянная Планка была значительно больше и оказывала влияние на объекты осязаемого человеком масштаба, то наш мир был бы совершенно неузнаваемым и странным местом. Объекты могли бы пропадать и вновь появляться в другом месте, а также находиться в двух местах одновременно.

Какой бы невероятной ни казалась квантовая теория, вскоре она начала демонстрировать впечатляющие успехи. В 1925 г. австрийский физик Эрвин Шрёдингер записал свое знаменитое уравнение, которое в точности описывало движение этих частиц-волн. Применительно к атому водорода, где единственный электрон обращается вокруг протона, оно дало замечательное совпадение с экспериментом. Уровни электрона, обнаруженные в атоме Шрёдингера, точно соответствовали экспериментальным результатам. Мало того, вся система Менделеева может быть, в принципе, объяснена через решение уравнения Шрёдингера.

Объяснение периодической системы

Одно из важных достижений квантовой механики — ее способность объяснять поведение строительных кирпичиков вещества, атомов и молекул. По Шрёдингеру, электрон представляет собой волну, которая окружает крохотное ядро. На рисунке мы видим, что двигаться вокруг ядра могут только волны с определенными дискретными длинами. Волны, длина которых укладывается целое число раз в орбиту, вписываются в эту систему замечательно. А вот те, у которых длина не укладывается целое число раз, не могут полностью обернуться вокруг ядра. Они неустойчивы и не способны образовывать стабильные атомы. Это означает, что электроны могут двигаться только в пределах отдельных конкретных оболочек.

 

Только электроны с определенной длиной волны могут находиться внутри атома, а именно: длина волны электрона должна целое число раз укладываться в орбиту. Это вынуждает электронные волны образовывать дискретные оболочки вокруг ядра. Подробный анализ того, как электроны заполняют эти оболочки, может помочь в объяснении периодической системы Менделеева

По мере того как мы удаляемся от ядра, эта базовая закономерность повторяется; с увеличением числа электронов внешнее кольцо всё дальше отодвигается от центра. Чем дальше отходишь, тем больше электронов обнаруживаешь. Этим и объясняется, почему система Менделеева содержит повторяющиеся регулярные дискретные уровни, причем каждый уровень повторяет поведение лежащей под ним оболочки.

Подобный эффект можно заметить, когда вы начинаете петь в душе. Только определенные дискретные частоты, или длины волн, удачно отражаются от стен и усиливаются, тогда как другие, которые не укладываются целиком, глушатся — аналогично тому, как электронные волны обращаются вокруг ядра атома: годятся только определенные дискретные частоты.

Этот прорыв принципиально изменил курс развития физики. Представьте: в одном году физики, пытаясь описать атом, оказываются в совершенном тупике. А уже на следующий год, получив уравнение Шрёдингера, они учатся рассчитывать внутреннее строение самого атома. Я иногда преподаю квантовую механику магистрантам и обязательно пытаюсь донести до них тот факт, что всё вокруг нас может, в определенном смысле, быть описано через решение этого уравнения. Я говорю им, что с его помощью можно объяснить не только атомы, но и связи атомов и образование молекул, а следовательно, и все химические вещества, из которых состоит наша Вселенная.

Однако, каким бы всеобъемлющим ни было уравнение Шрёдингера, оно всё же имело ограничение. Оно работало только для маленьких скоростей, то есть было нерелятивистским. Уравнение Шрёдингера ничего не говорило о скорости света, о специальной теории относительности и о том, как электроны взаимодействуют со светом через уравнения Максвелла. Не было в нем и красивой симметрии теории Эйнштейна, скорее оно было неуклюжим, да и работать с ним математически было трудно.

Теория электрона Дирака

И вот двадцатидвухлетний физик Поль Дирак решил соединить пространство и время и написать волновое уравнение, которое подчинялось бы специальной теории относительности Эйнштейна. Одной из причин отсутствия элегантности в уравнении Шрёдингера было то, что пространство и время рассматривались по отдельности, из-за чего вычисления зачастую были утомительными и требовали много времени. Теория Дирака объединяла то и другое и обладала четырехмерной симметрией, так что она одновременно была красивой, компактной и элегантной. Все неуклюжие члены оригинального уравнения Шрёдингера трансформировались в одно простое четырехмерное уравнение.

(Помню, как во времена учебы в старших классах я отчаянно пытался заучить уравнение Шрёдингера и сражался с его некрасивыми членами. Разве может быть природа такой злонамеренной, думал я, чтобы сотворить настолько неуклюжее волновое уравнение? Затем я наткнулся на уравнение Дирака, которое оказалось красивым и компактным. Я даже прослезился, когда увидел его.)

Уравнение Дирака имело шумный успех. Как мы уже знаем, Фарадей показал, что переменное электрическое поле в проволочной рамке порождает магнитное поле. Но откуда берется магнитное поле в стержневом магните, где нет никаких движущихся зарядов? Это казалось загадкой. Но уравнения Дирака предсказывали, что электрон имеет вращательный момент, который создает собственное магнитное поле. В математику это свойство электрона — спин — было встроено с самого начала. (Однако спин — не привычное вращение, которое мы видим вокруг, например в гироскопе, а один из математических членов в уравнении Дирака.) Магнитное поле, созданное спином, точно соответствует полю, которое на самом деле обнаруживается у электронов. Это помогает объяснить происхождение магнетизма. Так откуда же берется магнитное поле в магните? Его порождает спин электронов, находящихся внутри металла. Позже выяснилось, что спином обладают все элементарные частицы. Мы вернемся к этой важной концепции в одной из следующих глав.

Что еще важнее, уравнение Дирака предсказало существование неожиданной новой формы вещества, получившей название антивещества. Антивещество подчиняется тем же законам, что и обычное вещество, за исключением того, что обладает зарядом противоположного знака. Так что антиэлектрон, называемый также позитроном, имеет положительный, а не отрицательный электрический заряд. В принципе, можно создавать антиатомы, состоящие из антиэлектронов, обращающихся вокруг антипротонов и антинейтронов[1]. Но когда вещество и антивещество сталкиваются, происходит взрыв с выделением энергии. (Антивещество станет принципиально важным элементом теории всего, поскольку все частицы в окончательной теории должны иметь двойников из антивещества.)

Прежде физики рассматривали симметрию как эстетически приятный, но несущественный аспект любой теории. Теперь их поражала мощь симметрии, то, что симметрия способна реально предсказывать совершенно новые и неожиданные физические явления (такие, как антивещество и спин электрона). Физики начинали понимать, что симметрия — необходимое и неизбежное свойство Вселенной на фундаментальном уровне.


[1] Атомы антиводорода люди научились создавать еще в середине 1990-х гг. — Прим. науч. ред.

Источник: polit.ru